skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Calhoun, V D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. iscovering components that are shared in multiple datasets, next to dataset-specific features, has great potential for studying the relationships between different subjects or tasks in functional Magnetic Resonance Imaging (fMRI) data. Coupled matrix and tensor factorization approaches have been useful for flexible data fusion, or decomposition to extract features that can be used in multiple ways. However, existing methods do not directly recover shared and dataset-specific components, which requires post-processing steps involving additional hyperparameter selection. In this paper, we propose a tensor-based framework for multi-task fMRI data fusion, using a partially constrained canonical polyadic (CP) decomposition model. Differently from previous approaches, the proposed method directly recovers shared and dataset-specific components, leading to results that are directly interpretable. A strategy to select a highly reproducible solution to the decomposition is also proposed. We evaluate the proposed methodology on real fMRI data of three tasks, and show that the proposed method finds meaningful components that clearly identify group differences between patients with schizophrenia and healthy controls. 
    more » « less
  2. Time-resolved functional network connectivity (trFNC) provides a useful tool for representing functional magnetic resonance imaging (fMRI) data with functional networks that change with time. Partly due to its simplicity, sliding window Pearson correlation (SWPC) is the most widely-used method for trFNC estimation. In SWPC, the window size should be selected long enough to avoid spurious estimates of connectivity values, and short enough to capture meaningful fast variations in connectivity estimates. To solve this issue, we propose a method inspired by single sideband (SSB) modulation that allows us to select small window sizes for SWPC without filtering out important low-frequency activity information. We use simulation to show the improvement offered by the proposed method. Additionally, we use fMRI data to show that SSB-SWPC estimates have reduced spurious variation compared with typical SWPC estimators. 
    more » « less
  3. Abstract Despite the known benefits of data‐driven approaches, the lack of approaches for identifying functional neuroimaging patterns that capture both individual variations and inter‐subject correspondence limits the clinical utility of rsfMRI and its application to single‐subject analyses. Here, using rsfMRI data from over 100k individuals across private and public datasets, we identify replicable multi‐spatial‐scale canonical intrinsic connectivity network (ICN) templates via the use of multi‐model‐order independent component analysis (ICA). We also study the feasibility of estimating subject‐specific ICNs via spatially constrained ICA. The results show that the subject‐level ICN estimations vary as a function of the ICN itself, the data length, and the spatial resolution. In general, large‐scale ICNs require less data to achieve specific levels of (within‐ and between‐subject) spatial similarity with their templates. Importantly, increasing data length can reduce an ICN's subject‐level specificity, suggesting longer scans may not always be desirable. We also find a positive linear relationship between data length and spatial smoothness (possibly due to averaging over intrinsic dynamics), suggesting studies examining optimized data length should consider spatial smoothness. Finally, consistency in spatial similarity between ICNs estimated using the full data and subsets across different data lengths suggests lower within‐subject spatial similarity in shorter data is not wholly defined by lower reliability in ICN estimates, but may be an indication of meaningful brain dynamics which average out as data length increases. 
    more » « less